
KRITTIKA SUMMER PROJECTS 2023

Faintest of the Brightest
Ravi Kumar, Gaurav Waratkar, and Meghna Dixit





KRITTIKA SUMMER PROJECTS 2023

Faintest of the Brightest

Ravi Kumar1,2, Gaurav Waratkar1,2,3, and Meghna Dixit2,3

1Krittika - The Astronomy Club of IIT Bombay, Powai, Mumbai - 400076, India

2Indian Institute of Technology Bombay, Mumbai - 400076, India

3Mentor for the Project

Copyright © 2023 Krittika IITB
PUBLISHED BY KRITTIKA: THE ASTRONOMY CLUB OF IIT BOMBAY
First Release, July 2023



Abstract

Gamma-ray bursts (GRBs) are fascinating astronomical phenomena that have
captured the attention of scientists and researchers around the world. These

powerful bursts of gamma-ray radiation, lasting from a fraction of a second to a
few minutes, provide valuable insights into the universe’s workings.

To understand GRBs and their origins, astronomers employ various methods of
analysis. In this paper, we will focus on how to analyze data from the Cadmium
Zinc Telluride Imager (CZTI) onboard ISRO’s famous AstroSat, currently in orbit.

We process the CZTI data using cztpipeline, which automatically runs a series of
processing modules to yield clean, user-friendly data files. A section in this paper
explains the working of the CZTI Pipeline and gives a bird’s eye view into building a

GUI data processing platform.

Ultimately, we will implement various signal processing concepts on the CZTI data,
to mathematically determine the location and significance of the GRB.
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1. Introduction

1.1 Gamma Ray Bursts

1.1.1 What are Gamma Ray Bursts?
Gamma-ray bursts (GRBs) are massively large explosions caused when a star dies
resulting in a supernova, when two neutron stars collide, or when a neutron star
collides with a black hole, releasing a large amount of energy.

Figure 1.1: Emissions of a GRB (Source: NASA’s Goddard Space Flight Center)

This illustration shows the ingredients of a long Gamma-ray burst, the most
common type. The core of a massive star (left) has collapsed, forming a black
hole that sends a jet of particles moving through the collapsing star and out into
space at nearly the speed of light. Radiation across the spectrum arises from hot
ionized gas (plasma) in the vicinity of the newborn black hole, collisions among
shells of fast-moving gas within the jet (internal shock waves), and from the leading
edge of the jet as it sweeps up and interacts with its surroundings (external shock).

https://en.wikipedia.org/wiki/Neutron_star
https://en.wikipedia.org/wiki/Black_hole
https://www.nasa.gov/feature/goddard/2023/nasa-missions-study-what-may-be-a-1-in-10000-year-Gamma-ray-burst
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The presence of a prompt emission and a much longer afterglow (in multiple
wavelengths) is a common feature of GRBs.

1.1.2 Classification of GRBs
GRBs are classified into 3 main classes, short, long and ultra-long, according to the
duration for which they are detected.

Figure 1.2: Artist depiction of a
GRB created by two merging
neutron stars (Source: Mark A.
Garlick)

Short GRBs are events with a duration of less
than 2 seconds, and the Gamma rays from short
bursts lean toward the high-energy end of the
spectrum, while long GRBs emit lower-energy
Gamma rays. They are thought to be caused
by the merger of two neutron stars or a neutron
star and a black hole and account for about
30% of detected GRBs.

Long GRBs are events with a duration of
more than 2 seconds. Although the Gamma
rays emitted are of lower energy than short
GRBs, the total energy output of long GRBs is
generally higher owing to their longer duration.
They are thought to be caused by the core
collapse of rapidly rotating massive stars

Ultra-Long GRBs are events that last more than 10,000 seconds. They have
been proposed to be caused by the collapse of a Blue Supergiant star, a tidal
disruption event or a newborn magnetar

1.2 Astrosat and CZTI

1.2.1 Astrosat - India’s first multiwavelength space telescope
AstroSat is the first dedicated Indian astronomy mission aimed at studying celestial
sources in X-ray, optical and UV spectral bands simultaneously. The payloads cover
the energy bands of Ultraviolet (Near and Far), limited optical and X-ray regime
(0.3 keV to 100keV). One of the unique features of AstroSat mission is that it enables
the simultaneous multi-wavelength observations of various astronomical objects
with a single satellite.

AstroSat with a lift-off mass of 1515 kg was launched on September 28, 2015
into a 650 km orbit inclined at an angle of 6 deg to the equator by PSLV-C30 from
Satish Dhawan Space Centre, Sriharikota. The minimum useful life of the AstroSat
mission is expected to be 5 years.

Figure 1.3: Various Payloads on
Astrosat (Source: ISSDC)

The spacecraft control centre at Mission
Operations Complex (MOX) of ISRO Teleme-
try, Tracking and Command Network (ISTRAC),
Bengaluru manages the satellite during its en-
tire mission life. The science data gathered by
five payloads of AstroSat are telemetered to
the ground station at MOX. The data is then
processed, archived and distributed by Indian
Space Science Data Centre (ISSDC) located at
Bylalu, near Bengaluru.

http://www.markgarlick.com/index.html
http://www.markgarlick.com/index.html
https://en.wikipedia.org/wiki/Blue_supergiant
https://en.wikipedia.org/wiki/Tidal_disruption_event
https://en.wikipedia.org/wiki/Tidal_disruption_event
https://en.wikipedia.org/wiki/Magnetar
https://webapps.issdc.gov.in/astro_archive/archive/astrosat_images/astrosat_wireframe.png
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1.2.2 Cadmium-Zinc-Telluride Imager (CZTI)

Figure 1.4: CZTI (Source: IUCAA)

It is a hard X-ray imaging instrument covering
the energy band from 10 to 100 keV, has a de-
tector area of 976 cm2 constructed using CZT
modules, and uses a Coded Aperture Mask
(CAM) for imaging. The CZTI carries a Cesium
Iodide (Tl) based scintillator detector for Veto
measurements. This is located just under the
CZT detector modules. Further, there is a gap of
about 8 cm between the base of the collimator
slats and the detector plane, in order to ac-
commodate a radioactive calibration source
module in each quadrant. This source shines
alpha-tagged 60 keV photons on the CZT de-
tector in order to help calibrate the energy re-
sponse.

Veto Detector - a detector (CsI) covers the
large area of 256 cm2 and the light collection is
done using two photomultipliers (PMT), viewed
from sides. On registering an event, a signal from the detector is sent to a pre-
amplifier. This signal is processed and sent to the FEB for further analysis. After
amplification of the signal from pre-amplifier, the signal is sent to a comparator
via stretcher along with LLD level signal. If LLD is triggered the pulse is digitized to
an 8-bit output by ADC through control circuit. This output is used to differentiate
Compton scattered events and hence the background in main detector can be
reduced.

Figure 1.5: CZTI Assembly (Source:
Image Calibration Paper)

The full CZTI detector is illuminated only by
the on-axis source. Off-axis sources illuminate
only a part of the detector depending on the
position of the source, this is called “partial cod-
ing”. The coded mask for CZTI is designed with
seven patterns based on 255-element pseudo-
noise Hadamard set Uniformly Redundant Ar-
rays (URA). Each pattern has 16×16 mask ele-
ments and used as a mask for an individual
detector module. A random arrangement of
these patterns into a 4 × 4 array results in the
mask pattern for the first quadrant (quadrant
A). The coded masks for the other quadrants (B,
C, and D) were obtained by rotating the mask
pattern of quadrant A by 90°, 180° and 270°
respectively.

A passive collimator wall of height 400 mm separates any two adjacent mod-
ules, restricting the view of each detector module to the coded mask directly
above it. The collimator thus restricts the Field of View (FOV) of CZTI to 4.6° × 4.6°
FWHM at energies below 100 keV. For energies above 100 keV, the collimator walls
and the coded mask become progressively transparent, and allows the detection
of Gamma-Ray Bursts from all over the sky

http://astrosat.iucaa.in/czti/?q=home
https://arxiv.org/pdf/2108.06746.pdf
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1.2.3 Coded Aperture Mask Imaging

Figure 1.6: Working of a CAM (Source:
Wikipedia)

Coded apertures or coded-aperture
masks are grids, gratings, or other pat-
terns of materials opaque to various
wavelengths of electromagnetic radia-
tion. The wavelengths are usually high-
energy radiation such as X-rays and
Gamma rays. By blocking radiation in
a known pattern, a coded "shadow" is
cast upon a plane. The properties of
the original radiation sources can then
be mathematically reconstructed from
this shadow. Coded apertures are used
in X- and Gamma ray imaging systems,
because these high-energy rays can-
not be focused with lenses or mirrors
that work for visible light.

Figure 1.7: CZTI coded aperture mask for all four quadrants designed using 255
element pseudo-noise Hadamard set Uniformly Redundant Arrays. One extra
closed element is added to each URA to obtain a square pattern. Here black
areas represent closed mask elements and white areas represent open ones.
(Source: Image Calibration Paper)

https://en.wikipedia.org/wiki/Coded_aperture
https://arxiv.org/pdf/2108.06746.pdf
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1.3 CZT Pipeline

1.3.1 How It Works
The data received from the CZTI payload passes through a series of steps in a
processing pipeline. Three major data levels have been designated for long-term
storage. These are:
Level 0

This is the raw data received from satellite telemetry, which is segregated by
instrument, along with auxiliary data. This data is archived internally and not
distributed for public use.
Level 1

This is reorganized raw data, written in FITS format for Astronomical use. All
auxiliary information necessary for further processing of this data are collated
at this level and packed along with the respective science data. This data is
released via Astrosat data archive, at first to the Principal Investigator (PI) of the
corresponding observing proposal and, after a specified initial lock in period, to
anyone interested in the data.
Level 2

This data contains standard science products derived from Level 1 data. Level
2 data is also in FITS format and is available for science use, with the same lock-in
criteria and release mechanism as the Level 1 data.

Figure 1.8: Pipeline Work Flow (Source: CZT Software Userguide)

http://astrosat-ssc.iucaa.in/uploads/czti/CZTI_level2_software_userguide_V2.1.pdf
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1.3.2 Work Flow
Data reduction for CZTI is performed in three stages. Each of these stages involves
execution of several tasks of the pipeline.

• Stage 1: Generation of event file and calibration. In this stage event file is
generated

• Stage 2: Selection of data and cleaning. In this stage events are selected
based on Good Time Interval and noisy pixel events are removed from the
data.

• Stage 3: Generation of science products. In this last stage,DPI, image, spec-
trum, light curve and response matrix are generated.

The pipeline tasks can either be executed individually or by using the cztpipeline
module which allows the user to run required stages of the pipeline tasks.

1.3.3 Pipeline Installation
I found Ubuntu 20.04 LTS to work best with the pipeline on WSL2. Other distros
(including other versions of Ubuntu) gave various compilation errors.

To start off, update the system by running

1 $ sudo apt update && sudo apt upgrade

After this, we must install some packages that are essential to ensuring the
pipeline installs smoothly. Install them by running

2 $ sudo apt install gcc g++ gfortran perl make

Now download the pipeline from here and the CALDB from here.
Untar these files, ideally in your home directory by running the following:

3 $ tar -xvf czti_pipeline_20180308_V2 .1. tar
4 $ tar -xvf caldb_goodfiles_as1_czti_20180308_V1 .1.tar.gz

Now add the following to your .bashrc file (by running $ sudo nano ~/.bashrc)

5 export as1czt =~/ czti_pipeline/CZTI/czti/
6 export PFILES =" $PFILES:$as1czt/paramfiles"
7 export PATH=$as1czt/bin:$as1czt/scripts:$PATH
8 export GLOG_log_dir=$as1czt/log
9 export CZTI_templates=$as1czt/templates

10 export PERL5LIB =" $as1czt/lib/": $PERL5LIB
11 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$as1czt/lib
12 export PYTHONPATH =" $PYTHONPATH:$as1czt/scripts"
13 export CXXFLAGS="- fpermissive"
14 ulimit -s 65532
15 export CALDB =~/

Finally execute the following commands

16 $ source ~/. bashrc
17 $ cd $as1czt
18 $ cd ../
19 $ ./ InstallLibs
20 $ cd $as1czt
21 $ make
22 $ cd scripts
23 $ chmod +x cztpipeline

http://astrosat-ssc.iucaa.in/uploads/czti/czti_pipeline_20180308_V2.1.tar
http://astrosat-ssc.iucaa.in/uploads/czti/caldb_goodfiles_as1_czti_20180308_V1.1.tar.gz


2. Playing With Data

2.1 Introduction

2.1.1 FITS Files

FITS (Flexible Image Transport System) is a standard format for storing astronomical
data. FITS is much more than an image format (such as JPG or GIF) and is primarily
designed to store scientific data sets consisting of multi-dimensional arrays (1-D
spectra, 2-D images or 3-D data cubes) and 2-dimensional tables containing rows
and columns of information.
Headers

The FITS header is a block of text at the beginning of the file that contains
information about the data contained within the file. The header is arranged
in a series of keyword-value pairs, known as header cards, that each consist of
a keyword, a value, and an optional comment. The keyword tells the type of
information that the header card contains, the value is the actual value of the
information, and the comment describes the information or how it was derived.
The header is terminated by the keyword END.
Data

The data in a FITS file is stored in a series of N-dimensional arrays, where N is any
number between 0 (empty) and 999. The data arrays are preceded by a series
of header keywords that describe the size (NAXIS), location (NAXISn), data type
(BITPIX), and other characteristics of the data arrays. The data arrays are stored in
the file in the same order that they are listed in the header.

2.1.2 Accessing Files via Astropy

Astropy is a community Python library for Astronomy. It contains among other
things:

• A powerful N-dimensional array object
• Sophisticated (broadcasting) functions
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• Tools for integrating Fortran code
• Useful linear algebra, Fourier transform, and random number capabilities
Opening a FITS file is as simple as:

1 from astropy.io import fits
2 hdul = fits.open('file.fits')
3 hdul.info()

This will print out the information about the file, including the number of HDUs in
the file and the name and dimensions of each extension.

To obtain the data and header from the file, we can use:

1 data = hdul [0]. data
2 header = hdul [0]. header

2.1.3 Creating the Light Curve Files

The light curve files are created by running the cztbindata command in the termi-
nal. The command takes in the following input files along with time bin size and
produces the .lc and .pha (spectrum) file:

• inevtfile - The input evt file
• mkffile - The input mkf file
• badpixfile - The input badpix file
• livetimefile - The input livetime file
Finally the .lc file can be opened using astropy.io.fits and the required

columns can be plotted. In our case we will be plotting the COUNTS column against
the TIME column.

Here is a sample light curve file plotted for the duration of the GRB190928A:

Figure 2.1: Light Curve for GRB190928A
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2.1.4 Creating the Spectrum Files
The process used in creating the light curve will automatically produce a .pha
file which contains the spectrum of the GRB. We can plot the spectrum using
astropy.io.fits and matplotlib.pyplot.

Figure 2.2: Spectrum for GRB190928A

2.1.5 Some Anomalies in the Data
The above light curve was plotted around the time of the GRB, but if we plot the
full light curve, we can see some anomalies in the data where the counts suddenly
fall to zero.

Figure 2.3: Anomaly in the Light Curve

The region shaded in red is the region where the counts start rising then fall to
0. This is because there is a high influx of cosmic rays in a particular region in the
South Atlantic Ocean. This region is known as the South Atlantic Anomaly (SAA).
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The SAA is a consequence of the fact that the Earth’s inner Van Allen radiation
belt comes closest to the Earth’s surface at the south magnetic pole. This leads to
an increased flux of energetic particles in this region and exposes orbiting satellites
to higher than usual levels of radiation.

The detectors on Astrosat are shut off when the satellite passes through the
SAA, and hence the counts fall to 0.

2.2 Analysis of GRB190928A

2.2.1 Finding the GRB

We notice two peaks in the light curve. The first peak is the Prompt Emission, and
the second peak is the Afterglow. We can find the GRB by looking at the COUNTS
column and finding the maximum value. We can then use the TIME column to
find the time at which the maximum value occurs. In this case, the GRB occurs at
2019-09-28 13:12:17 UTC.

The duration of the GRB would be the time difference between the time at
which the GRB starts and the time at which it ends. The start and end times are
taken roughly before the prompt emission and after the afterglow respectively. In
this case, the duration of the GRB is 132 seconds.

A thing to note is that cztbindata produces .lc files for each quadrant of the
CZT detectors (namely Quad 0, Quad 1, Quad 2 and Quad 3). We must plot all
four quadrants to get a good idea of the GRB.

Figure 2.4: Light Curves for all four quadrants

The above plot shows the light curves for all four quadrants along with the
peaks of the prompt emission and afterglow and markers for the start and end of
the GRB.

https://arxiv.org/pdf/1402.7022.pdf
https://astronomy.swin.edu.au/cosmos/G/Gamma+ray+burst+afterglow
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2.2.2 Filtering and Detrending
From Figure 2.3, we can see that the "backgorund" data (the signal apart from
the GRB) has a mean value somewhere around 100, along with a lot of variation
around that mean value. This variation is known as noise and is caused by the
inherent physics of the working of the CZTI detectors. There is also various "trends"
present in the data due to the satellite observing various targets and the SAA
region. These trends need to be "detrended"

We do this by taking a region of 1000 seconds around the GRB trigger time (500
seconds before and after the trigger time) and fitting a quadratic polynomial to
the data. We then subtract this polynomial from the data to get the detrended
data. To make the fitting easier, we can use the savgol_filter function from the
scipy.signal module.

The savgol_filter function takes in the data, the window length and the
polynomial order as input. The filter fits a polynomial of a given order to the
datapoints in the window, then we fit a quadratic to the savgol fit and subtract
the quadratic from the data to get the detrended data.

The above process is done for the data points outside of a 3 sigma clip, so as to
not detrend the GRB or include any outliers in the trend.

Figure 2.5: Trend in the Light Curve

We notice a slight "bowing" in the orange quadratic that was fit to the savgol fit.
This is our trend in the data. We can now subtract this trend from the data to get
the detrended data.
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Figure 2.6: Detrended Light Curve

We can see that the detrended data has its mean counts close to 0 and is
flatter than the raw light curve.

Figure 2.7: Trend in the lightcurve

Here we can see the trend more clearly in the data for GRB 160909A.
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2.3 Different Bin Sizes

Uptil now we have analysed the data using a bin size of 1s. We can also analyse
the data using different bin sizes to see how the results change. For the purposes
of this analysis, we will be using bin sizes of 0.1s, 1s, 10s.

Figure 2.8: Light Curves for bins of 0.1s

Here we have the light curves of all four quadrants during the interval of the
GRB. We can see that the smaller binsize causes the variations in the background
to be more prominent.

Figure 2.9: Light Curves for bins of 10s

Here we can see that the larger binsize causes the variations in the background
to be less prominent, as more of the noise gets smooothened (averaged) out.



3. Signal To Noise Ratio

3.1 Introduction

The signal-to-noise ratio (SNR) is a measure used in science and engineering that
compares the level of a desired signal to the level of background noise. SNR is
defined as the ratio of signal power to the noise power, often expressed in decibels.
A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. While
SNR is commonly quoted for electrical signals, it can be applied to any form of
signal, in out case, we will be finding the SNR of a single in a timeseries.

Now, comparing the levels of the signal and noise are easier said than done.
The signal is the GRB, and the noise is the background. The background is not
constant, and varies a lot. This particular variation can be seen most clearly in
Figure 2.8. GRB 190928A is a particularly bright GRB, so it is easy to see the GRB
in the light curve. But what about fainter GRBs? How do we find the SNR of a
faint GRB? We’ll look at the various methods used to determine the SNR in the
upcoming sections.

3.1.1 Methodology
There are a plethora of methods that can be used to determine the SNR of a GRB.
There are methods that involve integrating the signal and noise separately and
then dividing the two, there are methods that involve fitting a distribution to the
noise and taking a certain percentile of the distribution as the noise and so on.
Regardless of the methods, the crux of the matter is to find quantities that best
describe the signal and the noise.
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3.2 Signal

Describing the signal is a fairly straightforward task as opposed to describing the
noise.

The signal is the GRB, and the GRB is a peak in the light curve. So, we can
describe the signal as the maximum value of the light curve textitin the GRB
window. This is the simplest way of describing the signal, and is the method we will
be using for the majority of this project and will be referred to as Ms.

Another method of describing the signal is to integrate the light curve over the
duration of the GRB. This method will be taken as a baseline for the other methods.

3.3 Noise

Describing the noise is a much more difficult task than describing the signal. The
noise is the background, and the background is not constant. The background
varies a lot, and the variation is slightly different for each orbit of the satellite, as
well as each quadrant of the CZT detectors.

3.3.1 Method 1 - Raw Statistics of the Noise
This method involves taking the raw statistics of the noise, namely the mean and
standard deviation of the noise. The mean of the noise is taken as the mean of
the light curve outside of the GRB window. The standard deviation of the noise is
taken as the standard deviation of the light curve outside of the GRB window.

We can then take the noise as µ +σ and the signal as Ms +µ.

∴ SNR =
Ms +µ

µ +σ
(3.1)

3.3.2 Method 2 - Fitting a Distribution to the Noise
This method involves fitting a distribution to the noise and then taking a certain
sigma clip of the distribution as the noise. This method is more robust than the
previous method as it takes into account the variation in the noise. Say for example,
the noise is a Gaussian distribution, then we fit a Gaussian distribution by varying
the mean (µ) and standard deviation (σ) till we get the best fit. We then take the
value of noise as µ +3σ .

There are quite a few different distributions that are of interest to us, namely
the Gaussian, Poisson, Gamma, Weibull and Rayleigh distributions. We will be
looking at each of these distributions and the troubles faced in fitting them in the
upcoming sections.

An important note: When we fit the noise to some distrbution, according to
the nature of the distribution, we get a value for the optimal mean and standard
deviation that will fit our noise. Since the data has been detrended, our noise is
centered around 0, so our entire data must be shifted by the mean obtained by
fitting, and our signal becomes Ms +µ.
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3.3.3 Gaussian Distribution

A Gaussian distribution is a continuous function representing the distribution of
many random variables as a symmetrical bell-shaped graph. The Gaussian dis-
tribution is also known as the normal distribution. The equation for a Gaussian
distribution is given by:

f (x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 (3.2)

Where µ is the mean and σ is the standard deviation of the distribution. The
Gaussian is of some interest to us because the noise in the light curves follows a
rough bell-shaped distribution.

Fitting a Gaussian is pretty straight forward using the scipy.optimize.curve_fit
function, and defining a function that produces a purely Gaussian equation

either by using the equation (3.2) or the scipy.stats.norm.pdf function. In either
case, the function takes in the data as input and returns the mean and standard
deviation of the distribution.

We can then take the noise as µ +σ and the signal as Ms +µ (Recall the note
at the end of Section 3.3.2).

∴ SNR =
Ms +µ

µ +σ
(3.3)

Figure 3.1: Fitting a Gaussian to the Noise (BinSize 0.1s) of Quadrant 0

It’s clear from the above picture that our noise is not Gaussian but a Gaussian
is a good approximation of the noise.
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3.3.4 Poisson Distribution
The Poisson distribution is a discrete probability distribution that expresses the
probability of a given number of events occurring in a fixed interval of time or
space if these events occur with a known constant mean rate and independently
of the time since the last event. The Poisson distribution can also be used for the
number of events in other specified intervals such as distance, area or volume. The
Poisson distribution is defined as:

f (k;λ ) =
λ ke−λ

k!
(3.4)

Where k is the number of events, and λ is the average number of events per
interval. An interesting thing to note is that the mean and variance of the Poisson
distribution are both equal to λ . The Poisson distribution is of interest to us because
the noise in the light curves seems to have a skewed distribution, and the Poisson
distribution, in general, approximates a skewed distribution well.

Fitting a Poisson distribution is a bit more complicated than fitting a Gaussian
distribution. We use the scipy.optimize.curve_fit function and defining a function
that returns a Poisson distribution by using scipy.stats.poisson.pmf. In this case
we obtain only the mean of the distribution (λ ).

We can now take the noise as λ +
√

λ and the signal as Ms +λ .

∴ SNR =
Ms +λ

λ +
√

λ
(3.5)

Figure 3.2: Fitting a Poisson Distribution to the Noise (BinSize 0.1s) of Quadrant 0

We can see that the Poisson distribution is a better fit to the noise than the
Gaussian distribution.
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3.3.5 Gamma Distribution
The Gamma distribution is a two-parameter family of continuous probability distribu-
tions. The exponential distribution, Erlang distribution, and chi-squared distribution
are special cases of the Gamma distribution. There are two different parameterisa-
tions in common use:

• With a shape parameter k and a scale parameter θ .
• With a shape parameter α = k and an inverse scale parameter β = 1/θ , called

a rate parameter.
In either case, the probability density function of the Gamma distribution is

given by:

f (x;k,θ) =
xk−1e−x/θ

θ kΓ(k)
(3.6)

Where Γ(k) is the Gamma function, and the mean is given by kθ and variance
is kθ 2. The Gamma distribution is of interest to us because the noise in the light
curves seems to have a skewed distribution, and the Gamma distribution can also
approximate a skewed distribution well.

Fitting a Gamma distribution is a bit simpler than fitting a Poisson distribution. We
use the scipy.stats.gamma.fit function that can directly give us the shape and
scale parameters of the distribution.

We can now take the noise as kθ +
√

kθ 2 and the signal as Ms + kθ .

∴ SNR =
Ms + kθ

kθ +
√

kθ 2
(3.7)

Figure 3.3: Fitting a Gamma Distribution to the Noise (Binsize 0.1s) of Quadrant 0

We can see that the Gamma distribution is very close to the Poisson distribution
in terms of the fit, maybe even better.
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3.3.6 Skewnorm Distribution

The skew normal distribution is a continuous probability distribution that generalises
the normal distribution to allow for non-zero skewness. The probability density
function of the skew normal distribution is given by:

f (x;ω,α,ξ ) =
2

ω
√

2π
e−

(x−ξ )2

2ω2

∫
α

(
x−ξ

ω

)
−∞

1√
2π

e−
t2
2 dt (3.8)

Where ω is the scale parameter, α is the shape parameter and ξ is the location

parameter. The mean (µ) of the distribution is given by ξ +ωδ

√
2
π

, where δ = α√
1+α2

and the variance (σ2) is given by ω2
(

1− 2δ 2

π

)
. The skew normal distribution is

of interest to us because the noise in the light curves seems to have a skewed
distribution, and the skew normal distribution can also approximate a skewed
distribution well.

Fitting a skew normal distribution is similar to fitting a Gamma distribution. We
use the scipy.stats.skewnorm.fit function that can directly give us the shape,
location and scale parameters of the distribution.

We can now take the noise as µ +σ and the signal as Ms +µ.

∴ SNR =
Ms +µ

µ +σ
(3.9)

Figure 3.4: Fitting a Skewnorm Distribution to the Noise (Binsize 0.1s) of Quadrant 0

We can see that the Skew Normal distribution is an equivalent or better fit to
the noise than the Gamma distribution.



24 Chapter 3. Signal To Noise Ratio

3.3.7 Quantifying the Fits
We can quantify the fits by calculating the Root Mean Square Deviation/Error
(RMSD or RMSE) of the fits. The RMSD is defined as:

RMSD =

√
∑

n
i=1( fi−oi)2

n
(3.10)

Where fi is the value of the fitted distribution at the ith data point, and oi is the
value of the original data at the ith data point. The RMSD is a measure of the
differences between the values predicted by a model or an estimator and the
values observed. The lower the RMSD, the better the fit.

Along with RMSD we can also calculate and compare various statistical
properies of the fits such as the variance, skewness and kurtosis. These are re-
ferred to as the moments of the distribution. The moments of the original data and
the fitted distribution can be compared to see how well the distribution fits the
data.

RMSD Variance Skewness Kurtosis
Gaussian 14.35 855.78 0 0
Poisson 16.51 934.95 0.032 0.001

Gamma 13.12 937.23 0.311 0.145
Skewnorm 13.10 932.53 0.299 0.175

Original Data - 1201.03 0.632 2.856

Table 3.1: Moments of the Original Data and the Fitted Distributions

We can see that the Gamma and Skewnorm distributions have the lowest
RMSD, and the moments of the Gamma and Skewnorm distributions are closest
to the moments of the original data. However, upon fitting the distributions to the
noise of the other quadrants as well as other light curves, we can see that the
Skewnorm distribution is a better fit to the noise than the Gamma distribution.

Although we have fitted a variety of distributions, the true nature of the noise
still remains a mystery. The noise is not a perfect fit to any of the distributions, thus,
for SNR calculations, we will be using the raw statistics of the noise.

https://en.wikipedia.org/wiki/Root-mean-square_deviation
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3.4 Energy Dependence of the SNR

Every detection (count) made by the CZT detectors has an associated energy
spectrum. cztbindata produces a .pha file along with the .lc file. The .pha file
contains the energy spectrum of the GRB. We can use this energy spectrum to find
the energy distribution of all the counts in the orbit. We are also able to produce
lightcurve files for different energy ranges.

Figure 3.5: Spectogram of the region around GRB 190928A

3.4.1 Energy Ranges
We can see that the GRB is present in most of the energy range (20-200 keV)
whereas the noise is predominantly present in the lower energy range (20-60 keV).
These "noise" events with sufficiently high counts in the lower 20-60 keV range are
known as cosmic rays.

In order to distiguish between cosmic and real sources of counts, we can
calculate the SNR of "outliers" in the lowest energy range and compare it with
the SNR of the same outliers in higher energy ranges. If the SNR of the outliers in
the higher energy ranges drops below a certain threshold, we can safely assume
that the outliers in the lower energy range are cosmic rays and not real sources of
counts. A real source of counts would have a SNR higher than our threshold in at
least one of the higher energy ranges.
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So, how do we determine the right amount of energy ranges to use? We
can plot the Signal, Noise and SNR for different energy ranges and see how they
change with energy. For the purposes of this project, we tried using 2, 4, 6, 8 and
10 equal energy ranges between 20-200 keV and 3 unequal energy ranges (20-60,
60-100 and 100-200 keV respectively).

(a) Signal vs Energy (b) Noise vs Energy (c) SNR vs Energy

Figure 3.6: Energy Dependence of the Signal, Noise and SNR

We can see that the Signal as well as Noise decrease with increase in energy,
which is to be expected as the spectrum of a GRB or any source for that matter
cannot be infinitely increasing with energy. However, the SNR increases with energy,
which is a direct result of the cosmic rays being present predominantly in the lower
energy range. Overall the noise drops faster than the signal with increase in energy,
which is a good thing as it means that the SNR will increase with energy.

3.4.2 The Optimal Energy Ranges
Now comes the part of choosing the right amount of energy ranges. We can see
that the SNR in general increases with increase in energy, reaches a maxima and
then starts decreasing. This shows the spectrum of the GRB. Something like 2 - 4
energy bins are ideal for SNR calculations and outlier rejection as taking many
energy bins leads to limited data in each bin, and taking too few energy bins leads
to a lot of cosmic rays in the lower energy bins.

For the purposes of this project, we will be using 3 energy bins (20-60, 60-100
and 100-200 keV) as 20-60 keV will contain majority of the cosmic rays and random
noise spikes, 60-100 keV will contain the GRB as well as some cosmic rays and
100-200 keV will predominantly contain the GRB.



3.5 Time Dependence of the SNR 27

3.5 Time Dependence of the SNR

We have seen earlier how choosing different time bins can affect the light curve
including the peak signal value and the noise. We can also see how the SNR
changes by taking different time bins.

Figure 3.7: SNR vs Different time bins for GRB 170330A

From the above plot we can see that the SNR varies with time bins. In particular
the SNR is highest for the binsize of 11 seconds. This is likely because the binsize of
11 seconds is the closest to the duration of the GRB (10 seconds), implying that the
entire GRB is contained in a single bin. This is a best case result and is not likely to
happen for most GRBs.

For example, we see a highly fluctuating SNR for the GRB 210709A and the
peak SNR was found for the binsize of 9 seconds whereas the GRB duration was 14
seconds.

Figure 3.8: SNR vs Different time bins for GRB 210709A



4. The Algorithm

Without the quantification and analysis of each and every count present in the
light curve, we cannot attempt to provide a definitive result about the SNR or even
the presence of a GRB. We proceed with this analysis by carrying out a series of
steps to identify sources then classify them as real or cosmic purely by using their
SNRs.

4.1 Outliers

Noise, as we know is predominantly present in the 20-60 keV energy range. So, we
take our initial set of outliers as all counts which have an SNR greater than 1 in this
energy range. For clarity we will refer to these outliers as Type 1 outliers.

Figure 4.1: Type 1 Outliers
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As we can clearly see, there are a lot of Type 1 outliers, and this is on purpose.
We want to be able to identify as many sources as possible, in order to not miss out
any faint GRBs.

The next step is to classify these Type 1 outliers as real or cosmic based on their
SNRs in the higher energy ranges. We can do this by calculating the SNR of each
Type 1 outlier in the higher energy ranges and comparing it with a threshold SNR
(typically chosen to be 3).

Figure 4.2: SNR variation of Type 1 outliers in different energy ranges

If the SNR of the Type 1 outlier in either of the higher energy ranges is higher
than the threshold SNR, we classify it as a possible real source, else we classify it as
a cosmic ray or noise. We also reject sources whose SNR is less than 1 in the 20-200
keV range, even if they pass the above criteria. We will refer to these outliers as
Type 2 outliers.

Figure 4.3: Type 2 and 3 Outliers

In Figure 4.3 the Type 2 outliers are marked in purple. We can see that they are
a subset of Type 1 outliers. Now, we have to find potential GRBs out of these Type
2 outliers. To do so, we must compare between quadrants. If a Type 2 outlier is
present at the same time stamp in at least 2 quadrants, then that Type 2 outlier
is classified as a Type 3 outlier, or, in other words, a potential GRB. In the above
figure, the green dots are the Type 3 outliers, they’ve been found in both Quadrant
0 and Quadrant 1, whereas the spikes without the green dots are Type 2 outliers
that have been found in only one quadrant.
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Figure 4.4: Finding Poential GRBs in a haystack of outliers

From the above figures, we can see how well the algorithm is able to distinguish
between all the outliers and possible GRB sources. Purple representing the Type
1 outliers, red representing the Type 2 outliers and green representing the Type 3
outliers. The Type 3 outliers are the only ones that are potential GRBs.

4.2 Timebins

The next step is to find the timebin for which the SNR of these Type 3 outliers is
the highest. We can do this by iterating over different timebins. The criteria used
to comapare each timebin is the average SNR of the Type 3 outliers across all
quadrants in that timebin. The timebin with the highest average SNR is chosen
as the timebin for which the results are to be reported. Figure 3.8 shows the SNR
variation of the Type 3 outliers in different timebins.

4.3 Results and Overview

We run the above steps, starting from detrending, all the way to maximimizing the
SNR over different timebins, for each GRB. The results are then stored in a .txt file as
well a .pdf file. The .txt file contains the SNRs of the analysis for each GRB, whereas
the .pdf file contains the raw and detrended light curves, SNR maximisation plots,
outlier detection plots and the potential GRB marked in each light curve.

The python code for the algorithm along with results for other GRBs can be
found at this project’s GitHub 1 repository.

1Link to the repository: https://github.com/ravioli1369/grbhunters

https://github.com/ravioli1369/grbhunters


4.3 Results and Overview 31

A schematic of each step followed by the algorithm is shown below:

Figure 4.5: Schematic of the Algorithm

The algorithm was run on 10 GRBs, of which 9 were detected successfully and
1 was not detected. The results are shown below:

Figure 4.6: Results of the Algorithm

A detailed report created by the script for GRB 1609009A is shown below,
starting with the .txt file output followed by each page of the .pdf file output:

Figure 4.7: Text file output for GRB160909A
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4.4 Blind Searches

As a bonus, the algorithm can identify potential GRBs in a blind search by iterating
through the timestamps of the light curve. The results of the blind search are shown
below:

Figure 4.8: Results of the Blind Search

We can see that the GRB was found at the correct timestamp and all outliers in
other timestamps throughout the light curve were rejected.
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